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PREFACE

This report is the result of -o investigations into the

numerical solution of ordinary and partial differential

equations. Green's Functions were used to convert the

* differential equations into integral form. The method of

central finite differences is a common, well known

method ffhe Method of Weighted Residuals was used as a third

method of solution. The main purpose of this thesis was to

compare the accuracy and advantages and disadvantages of

the integral equation Green's Function method to the other

methods. A second purpose was to add to m own knowledge on

how to solve differential equations. This effort also served

to strengthen -wy own abilities to write computer programs.-r -

-hivie'tried to give enough details on mr derivations and

equations used i'n programing that others could use the-m in

solving their own problems with these methods. e---

I would like to thank Dr Bernard Kaplan, my adviser,

for his guidance and advice throughout my effort. This

thesis was sponsored by Nick Pagano, AFML/MLBM.
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ABSTRACT

Several methods of numerically solving differential

equations in one and two dimensions were compared. The main

method used was an integral equation solution using Green's

Functions which were turned into matrix equations by using

the Trapezoid Rule. The method of finite differences was

used to turn differential equations into matrix equations

-a, which were solved using the Gaussian elimination method.

Both a Laplacian Green's function and a Helmholtz Green's

function were used to solve the one dimensional problem by

turning it into integral equations. These integral equations

* were turned into matrix equations using the Trapezoid Rule.

AM& The finite difference method and the Laplacian Green's

function method gave exactly the same results. The Helmholtz

Green's Function gave slightly better results. Two types of

the Method of Weighted Residuals were studied: the Galerkin

Method and the Collocation Method. Both of them gave much

better results than finite differences and the Green's

Function methods did. The Collocation Method gave better

results than the Galerkin method.

For the two dimensional problem an attempt was made to

use Method of Weighted Residuals to reduce the partial

3 differential equation to an ordinary differential equation

which was then solved using the Green's Function method.

Two different sries were used. In both cases the results

vi
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Vy were very bad and did not get better with more points. T[he

method finite differences gave reasonably good results for

the partial differential equation. The method of separation

of variables was examined to see if it could be used to

reduce the partial differential equation to an ordinary

differential equation whch would then be solved by the

4 Green's Function Method. The analysis showed that this

approach would not work very easily.

The programs were run on an Apple III personal computer

and were written in UCSD PASCAL.

vi



1. INTRODUCTION

1.1 Background

Many of the real world problems of interest to

engineers and physicists can be e xpressed in mathematical

form as differential equations or partial differential

equations. These equations relate differentials of functions

in time and space to each other, to other driving forces and

to boundary or initial conditions. This thesis is only

concerned with boundary condition type problems.

Boundary conditions can be classified into several

'a types. Dirichlet boundary conditions specify the value of

the unknown function everywhere on some boundary. Neumann

boundary conditions specify the normal derivative (gradient)

everywhere on the boundary. Mixed boundary conditions

contain Dirichlet boundary conditions on part of the

boundary and Neumann boundary conditions on part of the

boundary. Cauchy boundary conditions specify both the

function and its derivative everywhere on the boundary. Only

certain types of boundary conditions will lead to unique

solutions for different differential equations (Ref 5:706).

Even when a unique solution can be shown to exist, finding

it may be very difficult analytically. For these problems

numerical approximation techniques are necessary.

This thesis will use tile following numerical methods to



solve differential equations:

(1) The method of central finite differences(CFD)

"-" .(2) Green's Functions

(3) The Method of Weighted Residuals

Also this thesis will use the Gauss Elimination method

to solve the matrix equations that arise and the Trapezoid

rule to numerically evaluate any integrals.

1.2 One-Dimensional Case

A simple ordinary differential equation of the

Helmholtz type was chosen. This permitted the use of two

different Green's Functions (Laplacian and Helmholtz), the

method of finite differences and two different weighted

residual methods (Galerkin and Collocation). The relative

accuracy of each of these methods will be compared. The

Green's Function approach relies on defining a special

function that incorpates the boundary conditions of the

problem and which permits changing the differential equation

into an integral equation which is sometimes easier to

solve. The method of differences replaces the derivatives

with differences between the values of the unknown function

at nearby points and then solves the resulting set of linear

equations. The Weighted Residual methods approximate the

unknown function by some series of functions with unknown

coefficients, substitutes it in the equation, and applies a

2
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weighting factor, and then tries to solve the resulting

equations for the coefficients.

1.3 Two-Dimensional Problem

A two dimensional heat conduction type problem was

chosen with a separable driving function and functional

dependence on one boundary and zeroes on the other

boundaries. The central finite difference method was used

again. Then attempts were made to reduce the partial

differential equation to ordinary differential equations

that could be solved by the Green's Function Method.

.."o

1.4 Purpose
J. °

One purpose of this thesis was to learn more about some

of the various numerical techniques used to solve

differential equations, do numeical integration, and solve

large sets of linear equations. Another was to compare

various methods to each other in hopes of learning if the

Green's Function integral methou was any better to use than

the CFD method which is in common use. Hajdin and

Krajcinovic (Ref I and 2) contend that since numerical

integration formulas are more accurate than numerical

differntiation formulas, that methods like the Green's

Function method should be more accurate and more useful in

3
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i complex problems.

1.5 Plan of Development

.9

First the theory and formulas will be developed for the

4various methods for the one-dimensional case. Next the

algorythyms and computer programs will be written and

tested. The programs will generate the data to compare the

various methods. The procedures developed here will be

- needed for the two-dimensional problem. Then the theory and

formulas for the two-dimensional problem will be developed.

Finally the programs for the two-dimensional problem will be

written, tested, and used to generate data.

1.6 Equipment

The programs will be written in PASCAL and run on my

Apple III personel computer which has 128K bytes of memory.

4
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K4;: 2. THEORY

2.1 Green's Functions

a,

Green's Functions are a common tool that arise in many

branches of physics. Discussions on their use and derivation

can be found in most math physics and electromagnetism

textbooks (Ref 4-7). They are found in the solution of

differential equations and integral equations.

One way of deriving them is by making use of the Dirac

Delta function 8(a). The Dirac Delta function can be

represented by the following limit:

S-,)'7 T (2.1.1)

Which has the following properties

" 0 z 1, 0 (2.1.2)

(or -f , 0 (2.1.3)

These equations lead to the following useful result:

(2.1.4)

This result will be used in the solution of the following

*.p' , •. ' ' ' '. ' . - ', ' ' . ' .. ' '' '% . . % '.. .. - . _V '"-j .9. , .. . . . ." . '. . ,,
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equation by the method of Green's Functions:

Y F 6-ol(2.1.5)

Boundary Conditions: y(O) " C4 (2.1.6)

The Green's Function G(x,x') is defined by the

following equations:

-___ -_ - _(2.1.7)

Boundary Conditions: &(o, /)G(j, ) (2.1.8)

0 Multiply Eq 2.1.5 by G(x,x') and Eq 2.1.7 by y(x) and

subtract Eq 2.1.7 from Eq 2.1.5 to get

) -y -F6eI)&. y( )$-') (2.1.9)

However

Y I yG 'v- yV(2.1.10)

Therefore

It, ~~[Gy' y Go'j F(" o.x,,) .. ,
~A Y) G .

6
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Multiply by dx, integrate from x=O to x=l, and rearrange

terms to get

y( ) P [y ' (.,) , (2.1.12)

Sustitute the boundary conditions (Eq 2.1.6 and 2.1.8) to

get

"(((2.1.13)

Where

G' & %,'') (2.1.14)

A more general result for three dimensions can be found

by making use of Green's Theorem:

-. 0(Y706 - & (2.1.15)

Where n is the normal to the surface S.

(2.1.16)

- - G(2.1.17)

forx on the surface S G(. :,') - (2.1.18)

.47

o7

-%°% .% 4 V,~.%.*- . . ~ ~ '/..



i!
-P, Use Eq. 2.1.15 to 2.1.18 to get Eq 2.1.19 which is the three

dimensional equivalent of Eq 2.1.12.

(2.1.19)"d .v' F Ci, y e'fO, 42

2.2 Finding Green's Functions

The method of finding the Green's Function G(x,x') that

satisfies Eq 2.1.7 is fairly straightforward. Let

1) C7, 0,* 1) 4 0 r Az < 0

Gr .. *~%'~ Ga 60~, z) 4:V (221

These functions satisfy the following equations:

_%j 4-, (2.2.2)

OIOA0" G % (2.2.3)

dA&

Which have the general solutions of:

SA I Dx for -b (2.2.4)

" C D-x f " Z (2.2.5)

A,B,C, and D can be found by applying the following

conditions:

8
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'~ ~* C..(O~ ~ ~ 0(2.2.6)

1 GA.(4; ") (2.2.7)

I ~,('i '4 -/ (2.2.8)

Eq 2.2.7 is true because we want the function G(x,x') to be

continuous over the entire interval x=O to x=1. Eq 2.2.8

comes from integrating Eq 2.1.7 once over x. Eq 2.2.8 shows

that the derivative of G(x,x') is discontinuous at x=x'

Substitute the boundary conditions Eq 2.2.6 into Eq 2.2.4

and Eq 2.2.5 to get:

A = 0 Ctp 0 (2.2.9)

9Use Eq 2.2.7 in Eq 2.2.4 and Eq 2.2.5 to get:

I , = C t Do,' o r i(13.)"C (2.2.10)

Substitute Eq 2.2.4 and Eq 2.2.5 into Eq 2.2.8 to get:

5 =(2.2.11)

Eq 2.2.9,2.2.10, and 2.2.11 have the solution:

-I I

C (2.2.12)

Which yields the following Green's Function solution to Eq

9



~2.1.7.

C7(1 4 PV 00 r 4 (2.2.13)

Eq 2.2.13 will be referred to in the rest of thesis as the

Laplacian Green's Function since it is the solution of the

one dimensional Laplacian Equation Eq 2.1.7.

Another Green's Function that will be useful is the

solution to the Helmholtz Equation:

.of
-, S (2.2.14)

With the same homogenous boundary conditions Eq 2.2.6. This

* equation has the general solutions of:

C,=A ii14 exjO4 (G-4~ 4  (2.2.15)

& C x t fe O' Pco5 " ' (2.2.16)

Substitute Eq 2.2.6 in Eq 2.2.15 and Eq 2.2.16 to get:

A" O B +0 -- =- 0 -) D= 0 (2.2.17)

C Si& I + D 1CO 5 0 =P D-C a, I (2.2.18)

Substitute Eq 2.2.15 and Eq 2.2.16 into Eq 2.2.7 and Eq2.2.8

to get:

10
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A.= (2.2. 19)

C CcOsp./+ 5h"a/.to"9/]-A comW-au-/ (2.2.20)

Eq 2.2.18, 2.2.19, and 2.2.20 can be solved to give:

C . ' 0..r X - (2.2.21)

Eq 2.2.21 will be referred to in the rest of this thesis as

the Helmholtz Green's Function.

A useful property and check on the solution is that

most Green's Functions are symmetric, i.e. ((x,x')= C(x',x),

when the differential equations and boundary conditions are

Q adjoint (Ref 5%873-874).

2.3 Method of Weighted Residuals

A second method of solving differential equations is

the Method of Weighted Residuals. Consider the following

differential equation where L is a differential operator:

L y(z) t F(,w ) 0 (2.3.1)

Expand y over some set of basis functions C'(4)to get:
'4/

11
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Define the residual R(x) by:

SRL ) =_ FL)- L( .f " (fF)) (2.3.3)

Let W( )be some weighting function. Then use the folowing

set of equations to solve for

5W " IV (2.3.4)

This is the general form of the Method of Weighted

Residuals. There are various names given to different

choices of weighting functions W4 )

Collocation Method: (2.3.5)

Galerkin Method W-'j'.) -- j(..,t) (2.3.6)

2.4 Method of Finite Differences

A third method to solve differential equations is the

Method of Finite Differences. This method approximates

derivatives with differences between values at nearby nodal

points. To get these aprroximations we make use of the

Taylor series to expand y(x) at the points x-h, x+h, and

12



x+2h:

t 1. v 2 4 -, r ( 2 .4 .1 )OO~')

(._X) l,)h (.^ 0, (2.4.2)

-R T -o7 (4o - ' W

y~~~~~~ (-g)= jj h'C )t y)+. - hy/I ) (2.4.3)

+ 16"t +.* Iow

Where O(h6) refers to terms containing sixth and higher

order powers of h. Now subtract Eq 2.4.1 from Eq 2.4.2,

subtract Eq 2.4.2 from Eq 2.4.3, and add Eq 2.4.1 to Eq

2.4.2 to get the following equations:

p ~~ to)+~-y~-U 1Iyc.J3  + (2.4.4)

y&60+ )y( ) y ,4 ,4 y.,O ) (2.4.6)

+ O(W-)

These equations can be solved for y'(x) and y''(x) to get:

y"- .t) )-. y' *) ot"(h') (2.4.7)

Y( 3_h_______+ (2.4.8)
IAi

y(.)-yI-%h)-yW* SFvto1' (2.4.9)

*: The method of finite differences takes h to be some small

number and neglects the second terms in these equations to

get the following equations:

13



_ _ _ _ _ _(2.4 .10)

a(2.4.11)

AX. (2.4.12)

Eq 2.4.10 is known as the central finite difference (CFD)

approximation for y'(x). It has an associated error 0l ordei

h . Eq 2.4.11 is known as the forward finite difference

(FFD) approximation for y'(x). It has an associated error of

order h. Therefore, using the CFD method with symmetric

points around x should give more accurate results than the

FFD method. Eq 2.4.12 is the CFD approximation to y''(x). It

has an associated error of order hL.

2.5 Integration Methods

When the Green's Function Method and the Method of

Weighted Residuals are used to solved differential

equations, integrals will need to be evaluated numerically.

There are many methods of numerically calculating integrals.

Generally they work by taking the values of the integrand

f(x) at n+1 points, finding a polynomial of nth order that

fits these n+l points and then calculating the area under

this polynomial. This procedure is repeated for small

intervals until the range of integration is covered.

-14

d'%14
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" "Trapezoid Rule

The Trapezoid Rule is the simplest method of doing

numerical integration and is the method which will be used

in this thesis. It uses first order polynomials (i.e.

straight lines) to connect points on the curve y=f(x). These

lines form trapezoids whose areas are easily calculated. The

area under a typical trapezoid with a base length of h and

sides of f(xj, ) and f(xA ) is:

A e Li 4 COO]~) (2.5.1)

Figue 1. Trapezoid Area

So the combined total area of all trapezoids, over the

•*interval,^is4 toe is:

Therefore, the total area under the Trapezoid Rule is

4z'
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(2.5. 3)

This approximation has an associated error of order h3 .

Simpson's Rule

The next simplest method of numerical integration is

Simpson's Rule which uses polynomials of order 2 (i.e.

parabolas) to fit f(x). It can omly be used the number of

intervals used to divide x=a to x=b is even. The resulting

"I equation is (Ref 6:350-351):

a, + , a + f 4 .1) f (2.5.4)

This approximation has an associated error of order h $  An

earlier thesis (Ref 3:26-30) found that the trapezoid rule

gave more accurate results than Simpson's Rule for problems

involving linear Green's functions. This is because at the

point x=x' a parabola includes more incorrect area than

trapezoids do for a linear Green's Function. Therefore,

because it is simpler, can be used for any number of nodal

points (Simpson's Rule requires even numbec of points), and

because it gives better results for the Laplacian Green's

Function this thesis will use the Trapezoid Rule when doing

numerical integration.

16
-4 °

4.I.*=*..* . - ,v V:..°
" •" .- .- . -- " .% ," -

"
. " - ."-"•

T
• "" •" -'P""



NFigure 2. Parabloid Area

2.6 Converting Integral Equations to Matrix Equations

In sections 2.1,2.4, and 2.5 we have discussed various

*: methods of solving differential equations. It will simplify

notation and make it easier to see the methods of solution

by adopting matrix notation and methods. Consider the

following equation:

J.~~ (-Z (#~~F t fG,)(')Lt (2.6.1)0,'

Use the Trapezoid Rule Eq 2.5.3 to replace the definite

integral:

•=1 (2.6.2)

D1: Div A Do-P,: ... 0D5,h (2.6.3)

I F(2.6.4)

Use these results and definitions to write the following

17
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matrix equation:

G1 4 F, G ,f
(2.6.5)

In more compact form Eq 2.6.6 can be written as:

y + (Gf)D (2.6.6)

Another equation that will be needed is the following

integral equation:

Using the Trapezoid Rule Eq 2.6.7 can be written as:

j =.

Or in matrix form as:

|.5

Where(2.6l9)

18
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Eq 2.6.9 can be rewritten as:

D~y F(2.6.12)

. ! 2.7 Convertingl CFD Into Matrix Equations

I In section 2.4 the formulas for central finite

difrne were developed.,I this section they will be

used to turn the following differential equation into a

matrix equation:

+ 4W YZ (2.7.1I)

. Sustitute Eq 2.4.12 into Eq 2.7.1 to get:

Make the following notation changes:

.. ',.19

~%



- -- f.- ."' - - <

~7

~(2.7.3)

: The resulting general equation is:

y;-rl + Y;-, + Y; 61-) "  h ; (2.7.4)

-aoV" i -, A, 3, , "- , -

Let the boundary conditions on y(x) be:

y, = A a Qj Yv = D (2.7.5)

%0

I '

'., Eq 2.7.4 and Eq 2.7.5 generate the following set of linear

equations:

Y , =,go",A)jh
,,:YX, t" (3.5 -01) y3 f- hat = h3

+(2.7.6)

4t

Eq 2.7.6 can be written in either of the following matrix

formsn:

.0

[ % D

,.:. (2.7.6)

b.1:

L,'°



.'.-, [I0 0 o "

Y3 (2.7.7)

0 0 -- Y

0 a,-) ) 0 z . -1.

A ( .),o, "hf 2.7.9)

i a., .r -,

2.8 Matrix Inversion

In sections 2.6 and 2.7 the following form of matrix

Sequation has arisen (Eq 2.6.12 and Eq 2.7.9):

A (2.7.1)

"°Where A is the coefficient matrix, x is the unknown column

atrix, and B is constant column matrix. The problem is to

determine x.

The most commonly employed method is the Gauss

elimination method (Ref 4:1-4). This method makes use of the

21
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fact that the following algeraic manipulations performed on

a set of linear equations leaves their solution unchanged:

(1) Multiplication or division of any equation

(row) by a constant

(2) Adding or subtracting one equation(row) to

another equation(row).

Consider as an example the following set of four equations:

• 1 ".A- &(2.8.2)

The Gauss elimination method is simply a sequential

application of row operations (1) and (2) above. The goal is

to reduce all elements below the diagonal elements to zero.

First subtract A~i/i times the first row from the second

row, subtract II times the first row from the third row,

and subtract Aql times the first row from the fourth row.

This produces Eq 2.8.3 where all the elements in the first

column are zero except for the first element:

Ai A aA, A,1 l,
0 Ala A' A~ I

0 A'A A;~~ 3 (2.8.3)
~Pju C) Ala -Aq, Aqv, ,
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Next start with the second row and follow the same steps to

reduce the third and fourth elements of the second column to

zero. Finally, use the third row to reduce the fourth

element of the third column to zero:

0 Aj A 1 A to 121;3
0 0 A)IA' (2.8.4)

0 0 0 '4'I

Eq 2.8.4 can now be used to find the solution matrix by

simple substitution:

y #q I(2.8.5)
+ BF3 - I .

A # (2.8.6)

~ (Ia-AA~~~/A4(2.8.7)
-wra - Aj3,x)/Aj

(2.8.8)

During these operations the key elements are the diagonal

elements which are known as the pivot elements. The method

does not work if a pivot element is/becomes zero. Also if

the pivot element is small compared to the other elements

below it it will led to round-off errors. The solution is to

switch rows around to put the largest element in the column

at or below the diagonal in the diagonal position. This

23
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comparison is done when the method is done with the the

previous column.

Another thing to note is the types of matrices to be

asolved are different. The Green's Function method and the

Method of Weighted Residuals generate 'dense' matrices where

most of the elements are nonzero. The central finite

difference method on the other hand generates a tridiagonal

matrix where only the diagonal elements and the elements to

each side are nonzero. The solution of the tridiagonal

matrix is much simpler because of the fewer number of

operations needed (of order N versus order N 3 ) and computer

memory storage requirements can be reduced drastically from

N*N to 3N. Also because of the fewer number of operations

needed to solve a tridiagonal matrix, the accumlated

round-off errors will be much smaller.

a24
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3. ONE DIMENSIONAL PROBLEM

3.1 Computer Programs

The computer programs used to solve a one dimensional

problem for the various methods used were all very similiar.

The flow diagrams a.ppears in Figure 3.

Read N: number of data points
Read YO,Yl: boundary conditions

Generate array of nodal points
Generate Green's array
Generate numerical integ. coef. array

Generate the coef. array and the constant
array using matrix operations

Use Gauss Elimination method
procedure to solve the matrix eq.

Generate exact solution array
and compare to get error array

Print out solution array and error array

Fig. 3 Flow Diagram for Computer Programs

All that needed to be changed for each method used were

the procedures that generated the matrices needed and the

appropiate products of matrices.

'S 3.2 Problem

The following one dimensional differential equation

25
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:. .will be solved by the Green's Function method using both

Laplacian and Helmholtz Green's Functions, the method of

central finite differences (CFD), and by the Method of

Weighted Residuals (MWR) using collocation and Galerkin:

. iii) 1  =- + (3.2.1)
i ,O: O'

Boundary Conditions: -() = 0 (3.2.2)

This equation was chosen beause it is the simplest second

order differential equation whose Laplacian Green's

Function solution gives a integral equation and also has a

simple Helmholtz Green's Function solution. It will also

show the essential features of CFD and MWR methnods.

The solution to Eq 3.2.1 is relatively easy. It is to

see that the particular solution yp(x) = x satisfies the

inhomogeneous Eq 3.2.1 This leaves the solution of the

following homogenous equation to be found:
-R

y ty O (3.2.3)

Eq 3.2.3 can be solved by assuming that y(x) is a linear

combination of exponentials. Substitute the following

. equation (Eq 3.2.4) in Eq 3.2.3 to get Eq 3.2.5:

ex 
(3.2.4)

% 26
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Vt 0 (3.2.5)

Divide by the exponential to get:

(3.2.6)

Therefore the homogenous solution is:

-1,.

y~4=A'e".1, ie"=~' A co54e tSs~j (3.2.7)

Therefore the general solution is:

(3.2.8)

Apply the boundary conditions Eq 3.2.2 to gel.:

y())= 6 =0+ A.I + 3.o
(3.2.9)

(3.2.10)

Which have the solution:

Q. ,q

0 od 5 = - , ;.0(3.2.11)

Which gives the general solution as:
u "2

V. 27
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" l (3.2.12)

3.3 Green's Function Integral Equations

We know from section 2.1 and Eq 2.1.5 and Eq 2.1.12

that the Eq 3.2.1 can be put in the following form:

Y IG ,- Y 11 /(3.3.1)

+ ' C ¥ 3 -.063

Use the boundary conditions:

) 0(3.3.2)

to simplify Eq 3.3.1 to the following form:

i,:.: : y (,x') = So -.,x) (a-,9 .
(3.3.3)

The Laplacian Green's Function is (from Eq 2.2.13):

f Cv

Eq 3.3.3 can be turned into the following matrix equation

(see section 2.6):

28
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%7= G- D D (3.3.5)

Let (3.3.6)

Eq 3.3.5 can be put in the following form using matrix

methods:4

(3.3.7)

Eq 3.3.7 has the form of:

Al !. (3.3.8)

S Where GLD (3.3.9)

Eq 3.3.8 can be solved using Gaussian elimination

(see section 2.8) to get the Laplacian Green's Function

solution to y(x).

Another method of solving Eq 3.2.1 is to usc the

Helmholtz Green's Function. The Helmholtz Equation is:

" - (3.3.10)

The Helmholtz Green's Function is (Eq 2.2.21):

29
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The equivalent of Eq 3.3.3 is the following equation:

-()"4Z
- (3.3.12)

Which has the matrix form of (using the Trapezoid Rule):

% 5(3.3.13)

S'"Eq 3.3.13 can be solved easily by matrix multiplications

without having to use Gaussian elimination.

3.4 Central Finite Difference Solution

The next method used to solve Eq 3.2.1 is the method

of central finite differences (CFD) (see sections 2.4 and

2.7). Use Eq 2.4.12 to get:

y"= Y;+ t Y;- ,"

h1I . yY -- =-y;1 , +(3.4.1)

This equation simplifies to the following set of linear

equations:

-" .X-

X(3.4.2)

30
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With the boundary condition equations:

Y, .. V (3.4.3)

Eq 3.4.2 and Eq 3.4.3 can be turned into the following

matrix equation and definitions:

A(3.4.4)

0 0 0o

- o 0 ' (3.4.5)

a:XIVI 
(3.4.7)

~Eq 3.4.4 can be solved by the Gauss elimination method to

:". get the solution for y(x) at the nodal points.

.3.5 Method of Weighted Residuals Solution

,-. '"',..Eq 3.2.1 can also be solved using the Method of

,jig)

. •~

31
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- Weighted Residuals (see section 2.3). Chose a set of basis

p- functions which satisfy the boundary conditions

.7. y(O)=y( 1)=O:

~(3.5. 1

Substitute Eq 3.5.1 into Eq 2.3.2 to get an approximation

to y(x):

%ii:

The residual is:

~~4 +. =-y"€M - (3.5.3)

(3.5.3)

(3. 5. 5)-.',R, +
~4+ A(I-x

rGalerkin Method

For the Galerkin Method we use the functions in Eq

3.5.1 as the weighting functions and integrate from x=O to

x=l and set the Residual equal to zero to get:

32
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- ~oI\ O,~ =0(3. 5.6)
.o 

w.

Substitute Eq 3.5.5 to get:

j
-, "{> o0 =J ~~~'4 -,~ji3(3.5.7)

Simplify Eq 3.5.7 to get:

+Lizj- f J*t L '- -0~a. ( (3.5.8)

Use the following result (Eq 3.5.9) to simplify Eq 3.5.8

and get Eq 3.5.10:

A0 o ,, (3.5.9)
gso,

o=-'-- -! - -, 2 L- ;-vJ (3.5.10)

Eq 3.5.10 can be turned into the following matrix

equation and definitions:

A?- ' (3.3.12)

A;1  j%- _ _ j~jt~tl T~,a(3.5.13)
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..-C Where I is the column matrix of 67 . Eq 3.5.11 can be

solved using the Gauss elimination method.

Collocation Method

The collocation method uses a set of displaced Dirac

Delta functions as the weighting functions in Eq 3.5.6:

o0 A (3.5.14)

Substitute Eq 3.5.5 into Eq 3.5.14 to get:

Eq 3.5.15 can be put into the form of Eq 3.5.11 with the

following definitions:

,.a. (3.5.17)

Eq 3.5.11 can again be solved by the Gauss Elimination

method to get coef Oi

To get y(x) for both Galerkin and Collocation methods

substitute the solutions into Eq 3.5.2 and the values of

the nodal points in x:

• 34
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3.6 Numerical Results and Comparisons

This section will present the numerical results and

errors of the Laplacian Green's Function, Helmholtz

Green's Function, central finite difference (CFD),

Calerkin, and Collocation methods.

First, Table I shows results from the CFD method, the

Laplacian and Helmholtz Green's Function methods and the

exact value of y(x). Results are shown for one, three and

five interior nodal points. Second, Table 2 shows the

relative percentage errors of the results in Table I.

Table 1. CFD, Laplacian, and Helmholtz Results for

Different N and at Several Points

N X Y CFD Y LAP Y HELM Y EXACT

1 0.5000 -0.07412857 -0.07142857 -0.06828782 -0.06974697

3 0.2500 -0.04427401 -0.04427401 -0.04378418 -0.04401368
0.5000 -0.07015590 -0.07015590 -0.06938332 -0.06974697
0.7500 -0.06040304 -0.06040305 -0.05974305 -0.06005621

5 0.1667 -0.03056336 -0.03056336 -0.03041289 -0.03048348
0.3333 -0.05564811 -0.05564810 -0.05537471 -0.05550328
0.5000 -0.06992782 -0.06992781 -0.06958544 -0.06974697
0.6667 -0.06837619 -0.06837618 -0.06804304 -0.06820101
0.8333 -0.04640671 -0.04640670 -0.04618201 -0.04628921
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% Table 2. Relative Percentage Errors of CFD,

Laplacian, and Helmholtz Methods for
Different N and at Several Points

N X Y CFD Y LAP Y HELM

1 0.5000 2.411 2.411 -2.092

3 0.2500 0.591 0.591 -0.521
0.5000 0.586 0.586 -0.521
0.7500 0.577 0.577 -0.521

5 0.1667 0.262 0.262 -0.232
0.3333 0.261 0.261 -0.231
0.5000 0.259 0.259 -0.232
0.6667 0.257 0.257 -0.232
0.8333 0.254 0.254 -0.232

Table 3. Relative Percentage Error Trends at X=.5
for Different N for CFD, Laplacian, and
Helmholtz Methods

N H Y CFD Y LAP Y HELM

1 0.50000 2.41101 2.41101 -2.09206
3 0.25000 0.58629 0.58630 -0.52138
5 0.16666 0.25929 0.25928 -0.23159
9 0.10000 0.09313 0.93086 -0.08335
19 0.05000 0.02343 0.02313 -0.02094
29 0.03333 0.01052 0.01039 -0.00930

' Table 3 shows the relative errors at x=0.5 as the number

of nodal points (N) increases and the step size (H)

decreases. It can be seen that the size of the errors

decreases for smaller steps as would be expected. The most

unexpected result in Tables 1,2, and 3 is thai the C-D

method and the Laplacian Green's Function method give

exactly the same results (differences in the last decimal

.. '* place are due to different accumulated round-off error). A
W
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similiar result was gotten in a previous thesis (Ref

3:62-65). The Helmholtz Green's Function method gave

slightly better results in all cases than the CFD and

Laplaci.an Green's Function.

Table 4. Laplacian, Galerkin, and Collocation Results
for Different N and at Several Points

N X Y LAP Y GAL Y COLLOC Y EXACT

3 0.2500 -0.04427401 -0.04403237 -0.04396500 -0.04401368
0.5000 -0.07015590 -0.06974640 -0.06974170 -0.06974697
0.7500 -0.06040304 -0.06003848 -0.06009403 -0.06005621

5 0.1667 -0.03056336 -0.03048322 -q.03048368 -0.03048348
0.3333 -0.05564811 -0.05550319 -0.05550334 -0.05550328
0.5000 -0.06992782 -0.06974734 -0.06974698 -0.06974697
0.6667 -0.06820101 -0.06820088 -0.06820092 -0.06820101
0.8333 -0.04640671 -0.04628902 -0.04628904 -0.04628921

4Table 5. Relative Percentage Errors of Lapacian,
Galerkin, and Collocation Methods for
Different N and at Several Points

N X Y LAP Y GAL Y COL

3 0.2500 0.59147 0.04247 -0.11058
0.5000 0.58630 -0.00081 -0.00756
0.7500 0.57751 -0.02952 0.62973

5 0.1667 0.26204 -0.00087 0.00025
, 0.3333 0.26095 -0.00015 0.00011

0.5000 0.25929 0.00053 0.00001

0.6667 0.25687 -0.00019 -0.00013
0.8333 0.25385 -0.00041 -0.00036
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Table 6. Relative Percentage Error Trends at
x=0.5 for Different N for Laplacian,
Galerkin, and Collocation

N H Y LAP Y GAL Y COLLOC

3 0.25000 0.58629 -0.00081 -0.00756
5 0.16666 0.25929 0.00053 0.00001
9 0.10000 0.09313 0.00037 -0.00001
19 0.05000 0.02342 -0.00064 -0.00003
29 0.03333 0.01052 0.00004 0.00002

From Table 5 it can be seen that the Galerkin and

Collocation methods are much more accurate then the

Laplacian Green's Function Method (and CFD method).

However, the size of the error varies by a large amount at

various nodal points. From Table 6 it can be seen that

there is nothing to be gained by going to large numbers of

nodal points since the size of the error stopped

decreasing at N=9 for the Galerkin method and at N=5 for

the Collocation method. One potential problem with using

the Galerkin method in more complicated probims is that

doing the integral in Eq 3.5.6 will be more difficult. In

fact, numerical integration maybe necessary to evaluate Lq

3.5.6 and this will decrease the accuracy of the final

results. On the other hand, the Collocation method does

not suffer from this problem of evaluating Eq 3.5.6 since

it uses Eq 3.5.14 instead which is always easy to

integrate because of the Dirac Delta function.
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-. "*'4. TWO DIMENSIONAL DIFFERENTIAL EQUATION

4.1 Problem

The following form of equation often arises in heat

conduction problems and in electromagnetism:

Or~a a Q.T th tT 0
' *!€ (4.1.1)

If k*k takes the following form the above equation can be

separated:

K - f / (")) (4.1.2)

Let Ta =) (4.1.3)

Susitute Eq 4.1.2 and Eq 4.1.3 into Eq 4.1.1 to get:

: To get a problem that would result in an integral equation

f.[[i let us start with a T(x, y) and find out what k~k is:

S I f()Jk()

(4.1.6)

--. S -Y l - (4.1.5)

d 6 + A-±r 50;"=

I . '39
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Therefore:

-- /r6 O cc5 7 (4.1.9)

Use Eq 4.1.10 and Eq 4.1.11 to simplify Eq 4.1.9 into Eq

4.1.12:

.i7.

(4.1.10)

It,* C1Cd . (4.1.11)

YO, 0y (4.1i.12)

Eq 4.1.12 is the two dimensioal differential equation which

will be used to try out the methods of solving it. The

boundary conditions are:

T (0,* --- 7( J5y) T T(,lc ) 0"  (4.1.13)

77 co K (4.1.14)

..

The exact solution to Eq 4.1.12 is Eq 4.1.6. Eq 4.1.12 can

be put inthe following more compact form:

_ (x)T(,,),) 0 (4.1.15)

7r (4 1.6
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4.2 Central Finite Difference Solution

Figure 3 illustrates the grid of points spaced h apart

in x and y which will be used in the method of Central

Finite Differences to solve Eq 4.1.15.

5)

1 01 i 5

Figure 3. Two Dimensional Grid of Points

Recalling Eq 2.4.12 we can write the following

equations:

i4

(4.2.1)

er.. i-t T.i T (4.2.2)

Where T (4.2.3)

Let p P'y) (4.2.4)

Subsitute to get:
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t Fri 0 (4.2.5)

Multiply by h*h to get:

-- T.,, ~1T~IJ4Tz~~,+T 1,,,, 0 (4.2.6)

Eq 4.2.6 upon careful examination can be converted into the

following matrix equation:

4,.,

T Aoe / oct n to te 0 1 t TN 7

0 1 (F~~ 0 OV 0 0r;P T1
0 0 (Ia, 0~) 0I 0 0 ITJL-,a

6 1 0 1 ~F,..f 0 0 )
o o 1 0 1(k"F,-ov0o 1 f -''5

C) 0 0i 1 0 0 (I'Fa'l) ( ) Tqha -15,415r

0W 41, 0, 0, 0 T01(Vq) ~

The ones are located next to the diagonal and at N elements

away from the diagonal element. Any of these elements will

be zero instead if they correspond with elements on the

boundary of the problem. The following conditions incorpate

the boundary conditions (see Eq4.1.13 and Eq 4.1.14):

4.: ,. -. T 1 =Tf3 = TrI4 (4. 2.8)

T15f X x C.05 -- ~ (4. 2.9)
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Eq 4.2.7 has the form of:

T (4.2.10)

Eq 4.2.10 can be solved by the Gauss elimination to get the

solution for T at the nodal points.

4.3 Method of Weighted Residuals Solution

Let T(x,y) be approximated by the following expansion:

= - / -(4.3.1)

Then use Eq 4.3.1 to reduce Eq 4.1.15 to an ordinary

differential equation which will be solved by the method

Green's Functions:

eA 2 -1;0C (4.3.2)

~0 C;y aI1 ".t(;t (4.3.3)

The residual R(x) is:

Substitute Eq 4.3.2 and Eq. 4.3.3 into Eq.4.3.4 and simplify

WN, 43:.II
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7 W°• --- -I -- \ -

j=1- + •~ ( 4.3.5 )

Multiply by the shifted Dirac Delta weighting functions and

integrate to get (see Eq 3.5.1 ):

0= " { c "(y)--(i-..:) (4.3.6)

+ C.;(Y)~4j a -;..j..-(;tj) . y

The only way that this equation can be solved is if each

term for a different i value is equal to 0:

IC ; 11(.;" y). / -,', .4..3.7)

This equation can be simplified into the following

differential equation:

S(y) r )j 0(4.3 *

Where f;y) (xj, (4.3.9)

Next solve Eq 4.3.8 using a Laplacian Green's Function to

get (see Eq 2.1.12):
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C;(Y) (4.3C1)

Boundary Conditions are:

cy 0 C; 40(4.3.11)

C; () 0

The Laplacian Green's Function is (see Eq 2.2.13):

(YO = Y' -Y) +,,( Y > Y, (4.3.13)

The derivative of the Green's Function at y'=l is:

- G.(Y5Y9') 1; - (4.3.14)

.( .

Therefore Eq 4.3.10 becomes:

::-"This can be put into the matrix form:

[-...-

4... (4.3.16)

N ". Therefore:

4.

___-C o- ( 4. 3.17 )

%%
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To find the boundary conditions at y=l use the following

expansion:

hl

(4.3.18)

4 This equation can be turned into the following matrix

equation:

(4.3. 19)

At" (4.3.20)

Eq 4.3.19 can be solved by Gauss elimination to get the

to substitute into Eq 4.3.17 which can then be solved for

, . The main probem with this method is that turns out to

be a function of the x used in the displaced Dirac Delta

Functions. As a result we have to solve N ordinary

differential equations for for each x for a total of N*N

differentials equations solved (where N is the number of

nodes along each axis).

4.4 Alternate MWR Solution

Another solution to Eq 4.1.15 uses the fotlowing

expansion for T(x,y):
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(4.4. 1)

This expansion gives the following expansion for the

residual:

y)) / ,,7 LI;(y) t rA, y)C;(Y)3 (4.4.2)

Use the displaced Dirac Delta fuctions as weighting

functions and integrate to get:
,,

0L (y (; (y) F

Again the only way this equation can be satisfied is if each

fj term for constant i is equal to zero:

C;( y) .- (4.4.4)

Where F(x,y) is Eq 4.1.16. This equation can be changed into

(see Eq 4.3.13):

CI, G(Y) = y C; 0 +-o I dy ~(/)F( (/'))(4. 4. 5)

G(y,')

Eq 4.4.4 can be turned into the following matrix equation:

" -I " 1* D C0 4(4.4.6)
m 0 3 = Fx, ~y+) YK<.,) (4.4.-7)
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Eq 4.4.6 can be solved to get:

Ir-nIli- 7;(i)(4.4.8)

This equation can be solved by the Gauss elimination method.

4.5 Results

This section presents the results of solving of Eq

4.1.15 by the Method of Central Finite Diffferences and the

Method of Weighted Residuals using a polynomial series (Eq

4.3.1) and sine series (Eq 4.4.1) to reduce the partial

differential equation to an ordinary differential equation

which is then solved by the Green's Function method. Table 7

shows the results of the CFD method and shows the exact

result on the line below for 2x2 and 3x3 interior nodal

points. Table 8 shows how the relative percentage error near

the center decreases as the number of nodal points

increases. 6x6 nodal points was as large as the program run

on this Apple III could handle. The CFD method generates a

'a tridiagonal matrix of size N*N by N*N which needs a number

of operation of order N*N to solve on a computer.
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~.: ~ Table 7. 2-D CFD/Exact Solutions at Each
-~Point for N=2 and N=3

N x=.3333 x=.6666

2 y=. 6 666 0.169342 0.196272
I..0.166667 0.192450

y=.3333 0.483753 0.561300
0.481125 0.555556

Ix=.2500 x=.5000 x=.7500

3 y=.7500 0.161330 0.247200 0.201088
0.160041 0.244981 0.198874

y=.5000 0.082402 0.126317 0.102830
0.081660 0.125000 0.101474

y=. 2 5 0 0 0.022097 0.033879 0.027586
0.022097 0.033825 0.027459

Table 8. Relative Percentage Errors Near
the Center for 2-D CFD for
Various N

N Error(%)

2 1.98
3 1.05
4 0.78
5 0.50
6 0.40

Table 9 shows the results using the polynomial series, the

sine series, and the exact result (in that order) at each

nodal point for 2x2 and 3x3 interior nodal points. Table 10)

shows the examples of the best and worst relative percentage

errors for both methods for 2x2, 3x3, 4x4, and 6x6 interior

nodal points.

As can seen the MWR method combined with the Green's
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.' ". Function method did not give very good results. In fact, the

best results came in the 2x2 case and got worse for for

larger results. Besides the bad accuracy, another problem is

that the MWR plus Green's Function method uses considerably

more operations. The differential equations for c;(y) (Eq

4.3.6 and Eq 4.4.3) depend on the value of the xj chosen in

the Dirac Delta weighting function used in the Collocation

Method , so there are N equations for N xjvalues. Each of

N' these equations generates a dense matrix of order N which

require N*N*N operations each to solve. As a result the

total number of operations required is of order N to the

fifth for MWR/Collocation plus Green's Function method

versus N*N for the CFD method.
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Table 9. MWR Results:x (I-x), sin(i7Tx), and Exact
at Each Point for N=2 and N=3

N x=.3333 x=.6 6 67

2 y=.6667 0.057980 0.200274' "0.055061 0.192389

0.055556 0.192450

y=.3333 0.057221 0.018779
0.041218 0.152943
0.048113 0.166667

x=.2500 x=.5000 x=.7500

3 y=.7500 0.028060 0.104077 0.202004
0.032901 0.118357 0.216602
0.027459 0.101474 0.198874

y=.5000 0.028303 0.110059 0.230413
0.030039 0.114432 0.233472
0.033825 0.1.2500 0.244981

y=.2500 -0.027734 -0.077424 0.027208
0.018811 0.072418 0.150224
0.022097 0.081660 0.160041

Table 10. Relative Percentage Errors for 2-D MWR
for Different N and Two Weighting Functions

N x (1-x) sin(ilrx)
Best Worst Best Worst

2 4.07 18.93 -0.03 -14.33
3 1.57 -225.53 -8. 5 19.82
4 0.66 -164.09 -3.61 51.89
6 -0.70 101.90 -4.89 189.95

2 4.6 Separation of Variables

The method of separation of variables can be used to

get the analytic solutions to partial differential

*.' equations. Another possible method of solving a 2-D partial
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diffential equation would be to use the method of separation

of variables to turn the partial differential equation into

two ordinary differential equations which are then solved

" using the Green's Functon method. Consider a general

heat conduction problem given in figure 5.

T= 0(,)

0 -(XIY) 0

0

.* Figure 5. General Heat Conduction Problem

V AT ,y) - F oy) (4.6.1)

Boundary Conditions: -(oy = r/,( y)- T(,A,)o)%O(4.6.2)

~~T = u-.-2

A partial differential equation can be only separated

if it takes the following form (Ref 4:498-499):

7T *y)+ t£Y r y (4.6.3)

Comparing Eq 4.6.1 and Eq 4.6.3 we see that only if
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"{ . F(x,y) takes the following form will Eq 4.6.1 be separable:

r )  (y)k T (,yX (4.6.4)

Letting T be separable we get the following results:

T (ky) ( y(y) (4.6.5)

Boundary Conditions: ) ) = )( = 0 (4.6.7)

+ ' '( 0 .

Boundary Conditions: y o) = yC )t6 (4.6.9)

Eq 4.6.6 and Eq 4.6.7 could now be solved using the Green's

Function method. The problem that arises is that there is a

pair of differentila equations (Eq 4.6.6 and Eq 4.6.8) to be

solved for each choice of the separation constant a*a. As an

example, the 2-D problem that we have been considering in

the previous sections (Eq 4.1.12) becomes:

::: " )+ +o ta ) o
4e (4.6.10)

Boundary Conditions: )-.(7) .XftJ -0 (4.6.11)

Y"'(Y) ( Z (Y)-L.'
Y (4.6.12)

Boundary Conditions: y(O) -- Y =) (4.6.13)
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For this problem there is only one valid choice for the

separation constant:

R -

0 (4.6.10)

The difficulty that arises in the general problem, is

finding the proper 'choice(s) for the separation constant and

the proper weighting of each valid solution such that the

weighted sum of products of individual solutions matches the

boundary conditions. Combining this difficulty with the

fact that potentially a large number of ordinary

differe-ntial equations will have to be solved we see that-

this method is not a very viable or attractive method of

solving partial differential equations.
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5. CONCLUSIONS AND RECOMMENDATIONS

.- e..The purpose at this thesis was to investigate a number

of techniques that can be used to solve ordinary and partial

differential equations. The main interest was on the use of

Green's Functions in solving differential equations. The

Method of Weighted Residuals was also used. The method of

central finite differences was used since it is a commonly

used method and it was desired to see how the other methods

compared to it.

5.1 One Dimensional Problem

A one dimensional equation was used that could be

solved using both the Laplacian Green's Function and the

Helmholtz Green's Function. The Laplacian solution is an

integral equation. The one dimensional equation also had

nice solutions using the Galerkin and Collocation methods

which are subtypes of the Method of Weighted Residuals. The

Galerkin and Collocation methods both gave very accurate

results for only a small number of points used. The

Collocation method gave better results than the Galerkin

method. The central finite difference method was easy to

accomplish for this problem. The results were that CFD

method and the Laplacian Green's Function method gave

exactly the same results (to within accumulated round-off
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.3 " error). This result was surprising considering the

completely different matrices in each method. However, a

previous thesis had also gotten a similiar result. The

Helmholtz Green's Function method gave slightly better

results than the CFD and Laplacian methods. The Galerkin and

Collocation methods both gave much better results than the

CFD or either Green's Function method.

5.2 Two Dimensional Problem

In the two dimensional case a partial differential

equation was chosen that was separable and had the form of

the Helmholtz Eq. The CFD method gave reasonably good

results. Using the Method of Weighted Residuals to reduce

the partial differential equation to an ordinary

differential equation gave very bad results for both

approximations that were tried. The method of separaion of

variables was considered as a way of reducing a partial

differential equation to ordinary differential equations

which would then be-solved using Green' Function method.

This method was not actually solved because of difficulties

in choosing the separation constants and in weighting the

various solutions that each sepration constant generates. A

two dimensional Green's Function solution was looked at

during thesis preparation but the results were not presented

in this thesis. The main difficulty was in the summation of
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~.Y/ :.:&the infinite semi-periodic series expansion for the Green's

Function.

5.3 Recommendations

When solving a one dimensional ordinary differential

equation, the Weighted Residuals Methods should be

considered. They appear to give very good results. They hav(

the advantage that an approximate functional form is

generated which can be used to generate an answer at any

point and not just at the nodal points used. One

disadvantage of Weighted Residual Methods is that the sizes

of the relative errors vary considerably over the range of

integration. The Method of central finite differences

involves fewer operations than Weighted Residual Methods and

the Green's Function methods. For simple problems, it is

preferable to the Green's Function methods. For really

complicated problems the Green's Functions methods may give

better results, but this was not actualy shown to be true.

Using a Weighted Residual method to reduce a two

dimensional partial differential equation to a one

dimensional differential equation which is then solved by

Green's Functions does not appear to work. The central

finite difference method is much preferable as a method of

solution to the two dimensional problem.

57



BIBLIOGRAPHY

1. Hajdin, N. and D. Krajcinovic. "Integral Equation
Method for Solution of Boundary Value Problems of
Structral Mechanics, Part I. Ordinary Differential
Equations", International Journal forNumerical
Methods in Engineering, 4:509-522 (1972).

2. Hajdin, N. and D. Krajcinovic. "Integral Equation
Method for solution of Boundary Value Problems of
Structural Mechanics, Part II. Elliptic Partial
Differential Equations", International Journal for
Numerical Methods in Engineering,4:523-539 (1972).

3. Nelson, G. Numerical Methods and the Solution
of Boundary Value Problems. Wright Patterson Air Force

Base: AFIT Thesis, 1979.

4. Hildebrand, F. Methods of Applied
Mathematics. New York: Prentice-Hall, Inc., 1952.

5. Morse, P. and H. Feshbach. Methods of
Theorectical Physics: Part I. New York: McGraw-Hill,
1953.

6. Mathews, J. and R. Walker. Mathematical
Methods of Physics 2nd Ed. Menlo Park, California:
W.A.Benjamin, Inc., 1970.

7. Jackson, J. Classical Electrodynamics Ist Ed. New
York:John Wiley & Sons, Inc., 1962.

8. Finlayson, B. The Method of Weighted
Residuals and Variational Principles. New York:
Academic Press, 1972.

9. Martin, H. and G. Carey, Introduction to
Finite Element Analysis: Theory and
Application. New York: McGraw-Hill, 1973.

10. Houstis, E., R. Lynch, and J. Rice. "Evaluation of

Numerical Methods for Elliptic Partial Differential
Equations", Journal of Computational Physics,
27:323-350 (1978).

85



'. t %b'.'6

VITA

William H. Amelng was born on 13 January 1953 in

Monroe, Michigan, the son of Howard W. Ameling and Dorothy

A. Ameling (Toeppe). He was a National Merit Finalist and

graduated from Ross High School in Fremont, Ohio in 1971. He

attended Case Western Reserve University in Cleveland, Ohio

from 1971 to 1975 and received a B.S. degree in Astronomy

with Honor. He then attended University of Chicago in the

graduate physics program for three years. In September 1978

he left University of Chicago, joined the US Air Force, and

went to Officer Training School. He was commissioned in

December 1978. His first assignment was to Headquarters

Space and Missile Systems Organization (SAMSO)(now HQ Space

Division) at Los Angeles Air Force Station. He served in the

Deputy for Technology (SD/YL) as a project officer for the

Spacecraft Charging At High Altitudes (SCATHA) Progam for a

year and a half. He was then transferred to the Missile

Surveillence Technology (Measurements) Program as a project

officer for two years. He was assigned to the Air Force

Institute of Technology in June 1982 in the Engineering

Physics Program.

Permanent Address: 619 Ewing St.

Fremont, Ohio 43420

59

%0



/. .; ; _ .. . -.,. ... '.,, . .*. . .-...
. , .  

- -- ,' - - .- .- -. .... . .- .- ., -.. ,. . . . .

SECURITY CLASSIFICATION OF THIS PAGE
,..

REPORT DOCUMENTATION PAGE
,-4EPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclasq ficd
2lk SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved f ,,ub!jc ' - ;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE (I i S tr i'it I ited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/rFP Ir}!! o3D-I

ra& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Air Force Institute (If applicable)

of Technology AFT/r'lP

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

,'!ri ht-Patterson ATM, PIT 454,33

go. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Air Force l!aterials T1'I,/

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
.Triht-Patterson pF3, nr 45433 ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification) T'. rT'YApL ,'PFE 7 "

12. PERSONAL AUTHOR(S)

RAelin-, 7'illian 11.
ITYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) J 15. PAGE COUNT

!!asters T1,esis FROM ,- TO .-'P3 !I 5
16. SUPPLEMENTARY NOTATION A lAW AF- 190-17."-'V

n .cf I. : c-J P:cle onal DevelopmeaI

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neces~el lgji tkeaVly"J bflph omer)

FIELD GROUP SUB.GR. art"a!. -ifnr ntrai Ynuatiors, Crern q .u-ne i.or,

12 1 17inite 71prent !nalvsis, Te&~htinc Functions
20 13 ",esihIa is

19. ABSTRACT (Continue on reverse if neceuary and iden tify by bloct number)

Several nethods of nm.ericill, solvir!. differentia! ec.mqtlous one an( tV-r dirensions

vere co'narecd. The main rethod used --as a Crees':; FlvnCt-on .it.l'ral Soh, tl(7 11 i -et"od
r:as compared vith a central finite dlffirence f"Fr.. solit:on nn! -fit! ti-o 'i~ht'td
vesiduial methods: Calerl:in and Collocation. 1n a on 1 4ensir.al prol.le- the LaplocI n
rreen's Fuitction rethod gmn- result, that were the r-ic as tlhc 'rr) Tiethc. e"elrloltz
Creen's Function -ethod ,ave sli"tl" , -etter results t iir the Lani!ac-1.in Creen's rurct~en.

The Caler-in and Collocaticn rethods ',ave muchi Ietter revnlts tlan tc rcer's r"TIction

For a t"-1o diTiensional prol-e. the rF) 'prtho(! -ave CO(od rr tlts. TT-oe Collocation 7ethod
was used to reduce the nartial differential eruation to an orel narv"  Fe'ent-al eniat~on
which was then solve,1 b,, the Creen's Function 't'x. ,is rrlt'Od t-rned nut to not '-or'.
Separation of "ariahles to reduce the nartial i ffcrenti! ,ru,-ti' to -,- crdinav
differential epuation ,,hich is then solv-d 1I- t", r! reep',' rict'o, rlet!o(! "'as alqo

considered. I'oever, thAs npproncl. i-n- s io'r not to I, e ii-o(Fl fo- no-t ti-o 1!inonsional

2i!Z-STRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

JNLASSFIEO/UNLIMITEO fa. SAME AS RPT. DTIC USERS '

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(Include A rea Code)

Y~rlnn, PernarO -1' ,,)^ -'rT

DD FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE,

SECURITY CLASSIFICATION OF THIS PAGE

.[ " .. -. .. . ...-.- -.;. . . -... - - , • •, ,-, ..•, , . .. . - . .¢ -. ,,,-. -: -, ¢ ,:" ,- - . .- -_ - : , ." , .



40


